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Study of the momentum distribution of a Zn single crystal
using neutron Compton scattering

D Nemirovsky†, R Moreh†, K H Andersen‡ and J Mayers‡
† Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
‡ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK

Received 14 February 2000

Abstract. The neutron Compton scattering technique (NCS) was used for measuring the atomic
momentum distribution, at ∼4.6 K, of an hcp zinc single crystal in directions parallel and
perpendicular to the hexagonal planes. A strong anisotropy has been observed and interpreted
in terms of the anisotropic binding of the atoms in Zn. The data were used for deducing the zero-
point mean-square atomic momenta 〈p2

x〉 and 〈p2
z 〉. These were combined with reported measured

values of 〈x2〉 and 〈z2〉 obtained by the Mössbauer effect and used to test the predictions of the
uncertainty principle for the two products 〈p2

x〉〈x2〉 and 〈p2
z 〉〈z2〉 near 0 K. The measured values

of 〈p2
x〉 and 〈p2

z 〉 seem to conform to the requirements of the uncertainty relations to within 3%.
The data are compared with those obtained using the nuclear resonance photon scattering (NRPS)
technique.

1. Introduction

The NCS technique has been used [1–3] for studying anisotropic systems such as that of a
highly oriented pyrolytic graphite (HOPG) sample, and the mean-square linear momenta 〈p2

a〉
and 〈p2

c 〉 along and perpendicular to the hexagonal planes of the C atoms were measured.
In graphite, the atoms are of small mass and the binding between the atoms is very strong,
hence the atomic momenta are very high leading to effective temperatures: Ta ∼ 900 K and
Tc ∼ 500 K at T = 295 K in directions parallel and perpendicular to the graphite planes. The
excess kinetic energies of the C atoms above that of room temperature is contributed by the
very high zero-point linear momenta of the atoms in HOPG.

In the present work, we used the NCS technique to study a single crystal sample of metallic
zinc. In analogy with HOPG, metallic Zn is also anisotropic, having a hexagonal closed packed
(hcp) structure with a high c/a-ratio of 1.861, whereby the atomic binding in the hexagonal
planes is stronger than that along the c-axis. In the case of Zn, the atomic mass is ∼5.5 times
higher than that of carbon and the expected intrinsic accuracy of the measured atomic momenta
using the NCS process becomes much lower.

The purpose of the present work is threefold: first, to deduce the anisotropic binding
properties of the Zn atoms in a metallic single crystal by measuring the zero-point mean-
square linear momenta 〈p2

a〉 and 〈p2
c 〉 of the Zn atoms along and normal to the hexagonal

planes of the single crystal; second, to find out the sort of accuracy which can be achieved by
applying the NCS technique to a sample having a mass 5.5 times higher than that of carbon;
third, to combine the values of 〈p2

a〉 and 〈p2
c 〉 of Zn with those of 〈x2〉 and 〈z2〉 (obtained using

the Mössbauer effect) in order to test whether the products 〈p2
x〉〈x2〉 and 〈p2

z 〉〈z2〉 conform to
the requirements of the uncertainty principle near 0 K.
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To date, only two techniques have been employed for measuring the zero-point mean-
square linear momenta of atoms: neutron Compton scattering (NCS) and nuclear resonance
photon scattering [4] (NRPS). It is of interest to compare the results obtained by the two
techniques. Note that while in the NRPS measurement, only the zero-point mean-square
linear momentum, namely 〈p2

a〉 or 〈p2
c 〉 is measured, the NCS technique yields a more detailed

information, where the entire zero-point momentum distribution of the atoms along any
direction in the sample is determined.

In a previous work [4], the NRPS technique has been employed to measure the anisotropy
in the mean-square linear momenta of Zn atoms in a metallic single crystal, between 12 K
and 530 K. From the results, the zero-point mean-square linear momenta 〈p2

a〉 and 〈p2
c 〉 of

68Zn were deduced. This was done by measuring the resonance scattering intensities from the
7362 keV level in 68Zn with the photon beam parallel and normal to the hexagonal planes of
the single crystal as explained in detail in [4].

2. The neutron Compton scattering technique

In this method, epithermal neutrons (in the eV range), scattered from a sample, act as monitors
of the momentum distributions and of the kinetic energies (including the part due to the zero-
point motion) of the scattering atoms. Experimentally, one measures the time of flight (TOF)
of the epithermal neutrons from the pulsed source to the detector after scattering by the atoms
of the sample. The TOF is measured alternately with and without a U absorber set in front of
the n-detectors. The n-absorption dip corresponds to the first resonance energy at 6671 meV
in 238U which defines the final energy of the scattered neutron.

When the sample is highly anisotropic, such as an hcp Zn single crystal, the zero-point
mean-square atomic momenta of the atoms are expected to have maximum and minimum
values, 〈p2

a〉 and 〈p2
c 〉. In most cases, the mean-square atomic momenta are expressed in terms

of the effective temperatures Ta and Tc which are related to each other by:

〈p2
a〉 = MkTa and 〈p2

c 〉 = MkTc (1)

where M is the mass of the scattering atom and k the Boltzmann constant. These values
correspond to the motion of the Zn atoms in directions parallel and perpendicular to the
hexagonal planes of the crystal. The extent of the anisotropy in the motion of the Zn atoms
may be illustrated by noting that a recent NRPS measurement on the 68Zn isotope [4] yielded:
Ta = 100.5 K and Tc = 62.6 K at T = 12 K. The increment of Ta and Tc over 12 K is due to a
quantum effect and is contributed by the zero-point motion of the Zn atoms in the single crystal.
It may be noted that a strong atomic binding along the hexagonal planes implies a large zero-
point mean-square linear momentum 〈p2

a〉 and hence a small zero-point mean-square atomic
displacement 〈x2

a 〉, while a weak atomic binding along the c-axis implies a correspondingly
small 〈p2

c 〉 and hence a large 〈x2
c 〉. In fact, the zero-point mean-square displacements were

measured using the Mössbauer effect [5, 6] and were found to be in the ratio 〈x2
c 〉/〈x2

a 〉 = 1.57.
At any intermediate direction making an angle θ with the c-axis, the effective temperature is
related to Tc and Ta by:

Tθ = Ta sin2 θ + Tc cos2 θ. (2)

In poly-crystalline Zn, there is no preferred direction and the measured effective temperature
Te along any direction of the sample is related to the directional effective temperatures Ta and
Tc by: Te = (2Ta + Tc)/3. The value of Te was measured experimentally [7] for the 68Zn
isotope in a natural Zn sample, kept at T = 12 K, using the NRPS method and found to be
Te = 87.9 K. When this value is corrected for the average mass of natural Zn, one obtains:
Te = 89.7 K.
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In the NCS technique one measures a Compton profile curve whose standard deviation σa
is related to the effective temperature Ta by Ta = h2σ 2

a /(4π
2Mk). A similar equation holds

for Tc. Here also, at any direction making an angle θ with the c-axis, the standard deviation
σθ fulfils the relation:

σ 2
θ = σ 2

a sin2 θ + σ 2
c cos2 θ (3)

transferring momentum Q and energy ε by scattering from an atom of mass M . If the
momentum of the atom is p before collision, then momentum conservation requires that it is
p+Q after collision, and to conserve kinetic energy, the equation: ε = [(p+Q)2−p2]/2M must
be satisfied. The component of atomic momentum along Q is given by: y = (2mε−Q2)/2Q.
Thus by measuring ε and Q along a certain direction, it is possible to deduce J (Q, y), which is
related to the probability that the atomic momentum component along Q is y. Experimentally,
the distributions of the Zn atomic momenta, J (Qa, y) and J (Qc, y) in directions parallel and
normal to the hexagonal planes were measured, from which the effective temperatures Ta
and Tc were deduced. In our analysis we have accounted for the final state effects that were
discussed in detail in [9].

3. Experimental method

The neutron Compton scattering measurements were performed using the ISIS pulsed neutron
source of the Rutherford Appleton Laboratory in the UK in conjunction with the electron-volt
spectrometer (EVS). The experimental system consisted of a scattering chamber, a cryostat, a
single crystal of metallic Zn, and four banks of n-detectors (figure 1). Two metallic Zn single
crystals were used in the course of the measurements, each with dimensions 40×20×2 mm3,
the first cut with its 40 × 20 mm2 plane normal to the crystal c-axis, and the second cut
with its 40 × 20 mm2 plane parallel to the hexagonal planes of the crystal. The Zn sample
was held in the middle of a square aluminium frame using thin Al foils; it was placed with
its plane at an angle of 45◦ with respect to the incident n-beam (figure 1). The geometry
of the system was such that the neutron beam did not hit the Al frame to avoid increasing
the background. Each of the four detector banks consisted of eight Li-glass scintillators. The
banks were placed nearly symmetrically on both sides of the n-beam, one of which corresponds
to a transmission geometry while the other one corresponds to a reflection geometry (labelled
‘T’ and ‘R’ in figure 1). The detector angles in one bank were between 78 and 102◦ (figure 1)
while the other two were placed at backward angles, between 135 and 150◦. Figure 1
depicts the linear momenta ki , kr and kt of the incident and the scattered neutrons, at ∼90
and at ∼270◦ corresponding to reflection and transmission geometries respectively. The
momentum transferred by the scattering nuclei, Qc and Qa for the last two geometries are
also indicated.

The time of flight (TOF) of neutrons is measured from the moderator to each of the 32
n-detectors after scattering from the Zn sample. The moderator–scatterer distance is ∼11.0 m
while the scatterer–detector distance is ∼0.5 m. A difference resonance foil absorber technique
is used for defining the final energy of the neutrons [10]. The absorbing foil used in the present
measurement is uranium whose resonance energy is 6671 meV, having a Lorentzian shape,
with a half width at half maximum (HWHM) of 63 meV. The use of a U foil absorber is more
advantageous than that of gold, because of its higher resonance energy and narrower HWHM
than that of gold (being 4912 meV and 138 meV). This means that U provides both higher
momentum transfers and better energy resolution, enabling higher accuracy in measuring the
effective temperatures. The main drawback in using a U foil is that the resulting counting rate
is ∼10 times lower than that of a gold foil.
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Figure 1. Schematic diagram of the experimental system showing the incident n-beam, the Zn
sample and four banks each containing eight n-detectors). R and T denote detector banks set along
the directions of the reflected (R) and transmitted (T) neutrons with respect to the hexagonal planes
of the Zn single crystal. ki is the linear momentum of the incident neutrons; kt and kr are those of
the scattered neutrons corresponding to momentum transfersQa andQc along and perpendicular to
the hexagonal planes of the Zn sample. The relations between the vectors of the scattering process
for each of the two geometries are shown in the lower part of the figure.

The TOF spectra of neutrons scattered by the Zn single crystal, kept at 4.6 K, were taken
with and without the U resonance absorber placed in front of the n-detectors. More details
concerning the eVS spectrometer can be found elsewhere [11]. With the above geometric
arrangement it was possible to simultaneously cover the momentum distribution of the Zn atoms
in directions parallel and normal to the Zn hexagonal planes, and at several intermediate angles.
A total beam charge of around 4000 µA h protons on the spallation target was accumulated per
24 h for each TOF spectrum measured. Calibration runs were taken by using a powdered Pb
scatterer and measuring its well known n-diffraction lines at thermal neutron energies. Figure 2
shows typical TOF spectra of neutrons scattered from the Zn single crystal as measured by two
detectors, at 92.5 and 269.5◦ corresponding to reflection and transmission geometries. These
detectors depict the distribution of atomic momenta of the Zn atoms along and normal to the
hexagonal planes showing a remarkable difference in the width obtained in the two cases. Note
that the line width is largely contributed by the instrumental resolution, having a full width at
half maximum of 3.99 µs, and is of practically the same size for the two detectors.

It is important to add that in fitting the Compton profile function J (y), we accounted for the
fact that the natural Zn sample contains five different isotopic masses, of natural abundance
(64Zn 48.6%, 66Zn 27.9%, 67Zn 4.1%, 68Zn 18.8%, 70Zn 0.6%) having different scattering
cross sections. The fitted peak is thus a sum of five peaks each weighted by the product of
its natural abundance and its scattering cross section. Since all the Zn isotopes have the same
inter-atomic potential, the linear momenta are expected to vary with isotopic mass as M1/4

and hence only one fitting parameter is needed for all isotopes. Thus the effective resolution
function for Zn is slightly broadened compared to the case of a mono-isotopic sample. It may
be noted that the average difference in TOF from two neighboring isotopes is only 0.2 µs out
of a total of ∼300 µs. The instrumental resolution of the eVs spectrometer for a U resonance
absorber varied between 10 Å−1 and 15 Å−1 depending on the scattering angle. However,



NCS of Zn single crystal 4297

�W

�L �
D

�U

�L�
F

300 305 310 315 320

0.0

1.0

2.0

3.0

Γ = 4.66 µs

A
rb

itr
ar

y 
un

its

Time of flight (µs)

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Γ = 5.13 µs 

Figure 2. Typical measured TOF spectra (data bars) of neutrons scattered by the single crystal of
Zn, with momentum transfers parallel (lower figure) and normal (upper figure) to the hexagonal
planes as detected at ∼90 and ∼270◦. Solid lines through the data points are best fits which
accounted for the instrumental resolution function and the final state effects. The half widths at
half maximum of the TOF spectra are indicated. Note that the instrumental resolution width is
3.99 µs and is the same for the two spectra.

the small mass correction was taken into account to obtain an accurate value of the zero-point
linear momentum from J (y). Multiple scattering of neutrons in the sample was calculated by
accounting for the sample thickness and its geometry with respect to the n-beam and found to
be negligible.

4. Results and discussion

In the following discussion, all quantities measured at ∼4.6 K, such as the linear momenta
or displacements will be referred to as the zero-point quantities. This is justified by noting
that zero-point effective temperatures Ta and Tc are much higher than 4.6 K, and the error
introduced by this approximation is negligible.

Data analysis was performed by fitting the TOF spectra with the neutron Compton profile
function J (y) after convoluting with a Voigtian instrumental function and including final state
effects. The incorporation of those effects into the calculation is discussed in more detail
elsewhere [11].
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It should be emphasized that the inclusion of the FSEs in the case of Zn has a very small
effect on the calculated TOF spectra and a negligible effect on the resulting width of the
momentum distribution. This point is illustrated in figure 3 where the calculated TOF spectra
(the dotted and solid lines) are shown with and without the inclusion of FSEs. The two lines
are almost indistinguishable and their difference is shown in figure 3 as a dashed line after
being enlarged by a factor of five. This gives an idea about the magnitude of the FSEs in Zn
in the case where a U resonance absorber is used.

300 302 304 306 308 310 312 314 316 318 320

0.00

0.01

0.02

0.03

0.04

0.05

In
te

ns
ity

 (
A

rb
. U

ni
ts

)

Time of flight (µsec)

Figure 3. Calculated TOF spectra for a Zn sample (assuming A = 65.39) where final state effects
(FSEs) were taken into account (dotted line). The solid line does not include the FSEs. The dashed
line is the difference between these two calculated spectra (after being enlarged by a factor of five).

The values of σθ (in Å−1 units) of the Compton profile functions obtained from the fits
to the TOF spectra of 31 detectors are shown in figure 4 versus the angle θ between the Zn
single crystal c-axis and the momentum transfer vector Q. These data were then best fitted
using equation (3) and the values of σa and σc were obtained, from which Ta and Tc at 4.6 K
for metallic Zn were deduced. The above measurements were repeated three times on entirely
two different sets of runs. The results for one run are shown in figure 4. It reveals a strong
anisotropy as seen from the clear separation between the values of σ along and normal to
the hexagonal planes of the Zn single crystal. Note that all values are given for a Zn mass
of 65.39 amu which is the average mass of natural Zn. The average results of Ta , Tc for
the three runs together with the weighted average are given in table 1. For comparison, the
values measured by the nuclear resonance photon scattering (NRPS) technique [4] on 68Zn
(corrected to M = 65.39 by applying an M−1/2 mass correction) are also given. The table
also lists the effective temperature Te at T = 0 K, of a polycrystalline Zn sample, which was
deduced from the measured Ta and Tc, using: Te = (2Ta + Tc)/3. It is interesting to note that
the present NCS values of Ta , Tc and Te are higher by ∼3% but agree within error with the
NRPS values (table 1). Moreover, both sets of values are higher but in reasonable agreement
with Te = 87.0 K, 87.8 K and 85.8 K, deduced from the theoretical and experimental phonon
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spectra [12–14] g(ν) of metallic Zn, respectively, by using the relation:

Te =
∫ νm

0
g(ν)hνα dν

/(
k

∫ νm

0
g(ν) dν

)
(4)

withα = [(ehν/kT −1)−1+1/2], and νm the maximum cutoff frequency of the phonon spectrum.
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Figure 4. Measured standard deviations of the Compton profile curves versus the angle θ between
the Q-vector and the normal to the hexagonal planes of Zn. The solid line is a fitted curve of the
form: σ 2

θ = σ 2
a sin2 θ + σ 2

c cos2 θ . The values of Tc and Ta for Zn were deduced from σ 2
a and σ 2

c

(see text).

Table 1. Measured effective temperatures Ta and Tc of a Zn single crystal, at 4.6 K using the
NCS method, in directions parallel and perpendicular to the hexagonal planes. The results of three
separate experiments are listed and are corrected for a Zn atomic mass, M = 65.39 amu, where
the errors are enclosed in parentheses. The quoted results of the NRPS method [4] (originally
measured in 68Zn) were also corrected to an atomic mass of 65.39 amu.

NCS I NCS II NCS III (NCS)av NRPS [12] [13] [14]

Ta (K) 100.1(2.5) 107.7(1.8) 105.3(2.8) 104.1(2.3) 102.5(5.0)
Tc (K) 68.0(1.1) 69.7(1.4) 64.8(4.2) 68.1(1.7) 63.9(3.1)
Te (K) 89.4(2.0) 95.0(1.7) 91.8(3.3) 92.1(2.1) 89.6(4.4) 87.0 87.8 85.8

In the following we deal with the above results in view of the expectations of the uncertainty
principle (UP). To do so, we express our measured effective temperature in terms of the mean-
square linear momenta using the relations given in equation (1). Table 2 lists those results and
shows that 〈p2

a〉 is ∼60% larger than 〈p2
c 〉. These data may be contrasted with the mean-square

linear displacements 〈x2
a 〉 and 〈x2

c 〉 along and normal to the hexagonal planes (measured using
the Mössbauer effect) where 〈x2

a 〉 was found to be smaller by ∼60% than 〈x2
c 〉. This behaviour

is expected in view of the UP which requires the products 〈p2
a〉〈x2

a 〉 and 〈p2
c 〉〈x2

c 〉 at 0 K to
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conform to the uncertainty relations, namely,

〈p2
a〉〈x2

a 〉 � h2/16π2 (5)

〈p2
c 〉〈x2

c 〉 � h2/16π2. (6)

It should be pointed out that the Mössbauer measurements were carried out at ∼4.4 K, by two
groups of investigators using the 93.3 keV level of the 67Zn isotope. In table 2, the average of
these values are listed after being normalized to an atomic mass M = 65.39.

Table 2. Mean-square atomic momenta 〈p2
a〉 and 〈p2

c 〉 along the a-axis and the c-axis of a Zn single
crystal as measured in the present NCS work and using the NRPS technique [4]. The measured
and calculated values for a metallic polycrystalline Zn sample are also given. The average values
of 〈x2

a 〉 and 〈x2
c 〉 were taken from Mössbauer measurements [5, 6]. The calculated values of 〈x2〉

and 〈p2〉 were deduced from the phonon spectra [12–14]. The products 〈p2〉〈x2〉 for the various
cases are given in units of (9/8)h2/16π2. The errors are enclosed in parentheses and the units of
the various symbols are enclosed in square brackets.

〈p2〉 〈p2〉 〈x2〉 〈p2〉〈x2〉 〈p2〉〈x2〉
[Å−2] [Å−2] [10−3Å2] [(9/8)h2/16π2] [(9/8)h2/16π2]
Present NRPS Mossbauer Present NRPS

Measured
a-axis 140.2(3.0) 138.0(6.7) 2.058(0.041) 1.025(0.030) 1.009(0.053)
c-axis 91.7(2.2) 86.1(4.1) 3.234(0.316) 1.053(0.106) 0.988(0.108)
Polycrystal 124.0(2.8) 120.7(5.8) 2.450(0.147) 1.034(0.055) 1.002(0.071)

Calculated (polycrystalline Zn)
[12] 117.3 2.56 1.0637
[13] 118.2 2.60 1.0899
[14] 115.6 2.76 1.1338

The most interesting point in equations (5) and (6) is to find out to what extent the product
of the uncertainties for a real solid approaches the lowest limit of the uncertainty principle,
namely, to find out when the equality sign is achieved. Theoretically, only a harmonic oscillator
in its ground state fulfils the equality sign. Thus an Einstein solid, at 0 K, represented as a
system of harmonic oscillators having a single frequency is expected to fulfil the equality sign.
However, a real harmonic solid with a frequency distribution g(ν) at 0 K, yields a higher
effective value for the product. This may be seen by first evaluating 〈x2

a 〉 and 〈p2
a〉 using

the ground state Gaussian wave function of a harmonic oscillator and integrating over g(ν)
yielding:

〈x2
a 〉 = (h/8π2m)

∫ νm

0
g(ν)ν−1 dν

/( ∫ νm

0
g(ν) dν

)
= (h/8π2m)M−1 (7)

〈p2
a〉 = (hm/2)

∫ νm

0
g(ν)νdν

/( ∫ νm

0
g(ν) dν

)
= (hm/2)M+1. (8)

This yields for the product, the following expression:

〈x2
a 〉〈p2

a〉 = (h2/16π2)M−1M+1 (9)

where M−1 and M+1 are the n = −1 and n = +1 moments of the phonon spectrum of the
solid. A similar expression may be written for 〈x2

c 〉 and 〈p2
c 〉. The above product may be

calculated for an anisotropic Debye solid which may be represented by two different phonon
spectra ga(ν) and gc(ν) (each obeying the relation g(ν) ∝ ν2), yielding:

〈p2
a〉〈x2

a 〉 � (9/8)h2/16π2 (10)

〈p2
c 〉〈x2

c 〉 � (9/8)h2/16π2. (11)
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It is of interest to test to what extent our measured values of 〈p2
a〉 and 〈p2

c 〉 fulfil the later
relation if 〈x2

a 〉 and 〈x2
c 〉 are taken from the Mössbauer data. The results are listed in the last

two columns of table II and are given in units of (9/8)h2/16π2. It may be seen that any
product which is larger than 1.0 in such units indicates a deviation from the lowest limit of the
uncertainty principle for a Debye solid. Thus the present NCS results are on average higher
by around 3% but conform within error with the requirements of the UP. A somewhat closer
agreement with the predictions of the UP was obtained in our previous work using the NRPS
method [4].

In the literature no information about the phonon spectra of a Zn single crystal was reported
and the only information was for a polycrystalline metallic Zn. Thus in order to make another
comparison of the NCS results with the predictions of the uncertainty principle, we deduced
the value of 〈p2〉 and 〈x2〉 for a polycrystalline Zn using the following relations:

〈p2〉 = (2〈p2
a〉 + 〈p2

c 〉)/3 (12)

〈x2〉 = (2〈x2
a 〉 + 〈x2

c 〉)/3. (13)

The deduced product 〈p2〉〈x2〉 which is based on the present NCS data is higher by ∼3%
than that predicted for a Debye solid (see table 2). This value should also be compared with
those calculated using the n = −1 and n = +1 moments (equations (7) and (8)) of the real
phonon spectra [12–14] for a polycrystalline Zn sample (table 2). It may be seen that the
NCS-based value is lower by ∼4% than that based on the theoretical phonon spectra [12, 13].
This deviation increases to 10% when the NCS result is compared with that based on the
experimental phonon spectrum [14].

A few conclusions emerge from a consideration of table 2. First, the present measured
values of 〈p2

a〉 and 〈p2
c 〉 are higher by ∼2.7%, but practically the same as those obtained using

the NRPS method. A similar agreement to within ∼3% occurs between the present NCS results
and those predicted for a Debye solid. This shows that an anisotropic Debye solid is a good
representation of a Zn single crystal. Second, the measured NCS value of 〈p2〉 is higher by
∼5% than the average deduced from the theoretical phonon spectra [12, 13] using equation (7).
This deviation increases further when the comparison is made with the experimental phonon
spectrum. Third, an opposite situation occurs for the case of 〈x2〉. Here the Mössbauer value of
〈x2〉 is lower by ∼5% than that deduced from the theoretical phonon spectrum. The deviation
increases to 13% when the comparison is made with the 〈x2〉 based on the experimental phonon
spectrum [14]. Here, the large deviation may be caused by the high sensitivity of 〈x2〉 to small
variations in g(ν) at the lowest vibrational frequencies (see equation (8)). Such errors have
practically no effect on 〈p2〉 which is governed mainly by the higher vibrational frequencies.
Thus the high value of the product 〈p2〉〈x2〉 deduced from the phonon spectra could be due to
the large predicted value of 〈x2〉 caused by some error in the low frequency limit of g(ν).

Another explanation for the above may be invoked by considering the dimensionality
of the sample which is expected to play an important role in the determination of the lowest
achievable value of the product 〈p2〉〈x2〉. To do so we may consider the case of highly oriented
pyrolytic graphite known to be a highly anisotropic layered system and a good example of a
two-dimensional system. When the product 〈p2〉〈x2〉 is calculated at 0 K for graphite using
its phonon spectrum [15, 16] we obtain 〈p2〉〈x2〉 ∼ 1.43 in units of (9/8)h2/16π2. Similar
values were obtained when the product was calculated for the a-direction and the c-direction
of HOPG using the calculated phonon spectra of [17]. Such values represent a huge deviation
from that of a Debye solid.
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5. Conclusions

We have shown that the NCS technique may be used for measuring the zero-point momentum
distributions for masses as heavy as zinc with an error of the order of 5%. This was possible
because use was made of a U foil absorber to define the final energy of the neutron. The
width of the neutron resonance capturing level in U is much narrower than that of a gold
foil. The deduced zero-point effective temperatures are of about the same accuracy as those
obtained using the nuclear resonance photon scattering technique. The measured zero-point
mean-square linear momenta 〈p2

a〉 and 〈p2
c 〉 along and perpendicular to the Zn hexagonal

planes were combined with the literature values of the zero-point mean-square displacements
obtained using the Mössbauer effect. The products of the form 〈p2

a〉〈x2
a 〉 and 〈p2

c 〉〈x2
c 〉 were

found to conform to the requirements of the uncertainty principle for a Debye solid to within
∼3%.
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